Report #120

Red River Coal Company Benthic Macroinvertebrate Survey Spring 2013

Submitted To:

Roger Jones P.O. Box 668 6999 Polk Road Norton, Virginia 24273 United States of America

Submitted By:

Biological Monitoring, Inc. 1800 Kraft Drive, Suite 104 Blacksburg, VA 24060 Phone: 540-953-2821 Fax: 540-951-1481

Email: bmi@biomon.com

EXECUTIVE SUMMARY

Biological Monitoring, Inc. (BMI) performed a stream survey in the South Fork Pound River Watershed for Red River Coal Company. The purpose of this survey was to conduct instream assessments as outlined in Red River's permits. Five instream monitoring stations were sampled.

The Virginia Stream Condition Index (VASCI) protocol was used for instream biological surveys. All biological sampling was performed in accordance with the Virginia Department of Game and Inland Fisheries' scientific collection permit requirements.

Samples were collected on May 13, 2013. Benthic samples were collected based on BMI's QAPP. All organisms were identified to the lowest practicable level and collapsed to the family level for VASCI calculation. The US EPA's Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers was used for sampling macroinvertebrate populations and performing habitat assessments.

The analysis of the Spring 2013 survey data yielded VASCI scores ranging from 17.19 (RC-1) to 53.53 (GF1). Using the Virginia Department of Environmental Quality devised scale, these stations were classified in the "Severe Stress" and "Stress" Aquatic Life Use (ALU) Tiers. The habitat assessment scores ranged from 143 (SFP-2) to 151 (SFP-1, RC-1) falling into the "Suboptimal" category of habitat. Physicochemical and chemical analyses seem typical for mining influenced streams in the region.

TABLE OF CONTENTS

EXE(CUTIVE SUMMARY	I
TABI	LE OF CONTENTS	II
LIST	OF FIGURES & TABLES	III
Lis	T OF FIGURES	III
Lis	T OF TABLES	III
1.0	INTRODUCTION	1
2.0	METHODS AND MATERIALS	2
2.1	General	2
2.2		
2.3	MACROINVERTEBRATE SAMPLING & ASSESSMENT	6
2	2.3.1 Sampling & Identification	6
2	2.3.2 Macroinvertebrate Data Assessment	7
2.4		
2.5		
2.6	CHEMICAL MONITORING	12
3.0	RESULTS	13
3.1	STATION LOCATION	13
3.2	MACROINVERTEBRATE MONITORING DATA	13
3	3.2.1 Virginia Stream Condition Index Metrics	
Ĵ	3.2.2 Virginia Stream Condition Index Scores	
3.3		
3.4		
3.5	CHEMICAL MONITORING	19
4.0	DISCUSSION	20
4.1	STATION LOCATION	20
4.2	MACROINVERTEBRATE DATA	20
4.3	HABITAT ASSESSMENT	21
4.4	WATER QUALITY ASSESSMENT	21
5.0	LITERATURE CITED	22
APPE	ENDIX A: STATION PHOTOGRAPHS	A
A DDI	ENDIY R. PAW DATA	R

LIST OF FIGURES & TABLES

List of Figures

FIGURE 1. MAP OF THE MONITORING STATIONS.	4
FIGURE 2. ORTHOPHOTO OF THE STUDY AREA	5
FIGURE 3. VASCI SCORING SUMMARY	16
FIGURE 4. HABITAT SCORING SUMARY	18
List of Tables	
TABLE 1. MONITORING STATION ATTRIBUTES	3
TABLE 2. VASCI METRICS AND EXPECTED RESPONSES	9
TABLE 3. HABITAT ASSESSMENT PARAMETERS	12
Table 4. Identification / Enumeration Data	14
TABLE 5. VASCI METRICS.	
TABLE 6. VASCI SCORING.	
TABLE 7. RBP HABITAT SCORING.	17
Table 8. Water Quality Analyses	19

1.0 INTRODUCTION

Biological Monitoring, Inc. (BMI) performed a stream survey for Red River Coal Company in the South Fork Pound River Watershed located in Wise County, Virginia. The purpose of this survey was to conduct instream assessments in fulfillment of permit requirements. The present report provides the methods utilized and the results obtained from the May 13, 2013 sampling event.

BMI is a Tier III (VA) bio-monitoring facility as well as a National Environmental Laboratory Accreditation Program (NELAP) accredited Whole Effluent Toxicity Laboratory. BMI specializes in issues of water quality. Since 1980, BMI has been providing expertise in aquatic toxicology and risk assessment. Highly motivated and academically trained scientists at BMI work closely with clients to create practical solutions to environmental problems. BMI has maintained a commitment to the research and development of aquatic biomonitoring and toxicological concepts resulting in leading edge technologies and applications.

BMI interacts with regulatory agencies on behalf of its clients to solve specific environmental problems associated with water quality and toxicological regulations and permit compliance. With its main facilities located in Blacksburg, Virginia, BMI focuses on the development and application of procedures to create feasible solutions that balance the need for environmental protection and continued economic development.

2.0 METHODS AND MATERIALS

2.1 General

On May 13, 2013, samples were collected from several instream stations in the South Fork Pound River Watershed. Generally, instream stations were sampled for benthic macroinvertebrates as well as analytical and physicochemistry.

Grab samples were used for analytical and physicochemistry. Macroinvertebrate samples were collected following BMI's Biological Monitoring Program Quality Assurance Project Plan for Wadeable Streams and Rivers (QAPP) (BMI 2012). The Virginia Stream Condition Index (VASCI) protocol was used for this instream biological survey (Tetra Tech 2003). The US EPA's Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers (RBP) was used for sampling macroinvertebrate populations and performing habitat assessments (USEPA 1999).

Qualitative habitat assessments were conducted at each bioassessment site by trained and experienced individuals. Physicochemical monitoring was performed in the field. Chemistry samples were collected and submitted to Environmental Monitoring, Inc. for analyses. This survey was conducted in accordance with Red River's permit conditions.

2.2 Station Location

Five instream monitoring stations were specified for this project. Station location was provided by the permittee. These stations were located in Wise County, Virginia and in the South Fork Pound River Watershed. Latitude and longitude coordinates were recorded at the downstream extent of the station using a Garmin[®] Global Positioning System portable unit (GPSMAP 60 CSX). Table 1 summarizes the monitoring station

attributes. Figure 1 provides a map of the area and the location of the monitoring stations. Figure 2 presents an orthophoto of study area. Station photographs are presented as Appendix A.

 Table 1. Monitoring Station Attributes.

Station ID	Location Summary	Latitude	Longitude
SFP-1	Most upstream station	37° 03' 57.0"	82° 41' 40.6"
SFP-2	Downstream of confluence of Rat Creek and South Fork Pound River	37° 04' 45.9"	82° 39' 30.8"
SC-1	Mouth of Short Creek	37° 04 36.9"	82° 39' 29.4"
RC-1	Mouth of Rat Creek	37° 04' 36.3"	82° 39' 27.1"
GF-1	Mouth of Glady Fork	37° 05' 23.1"	82° 37' 51.4"

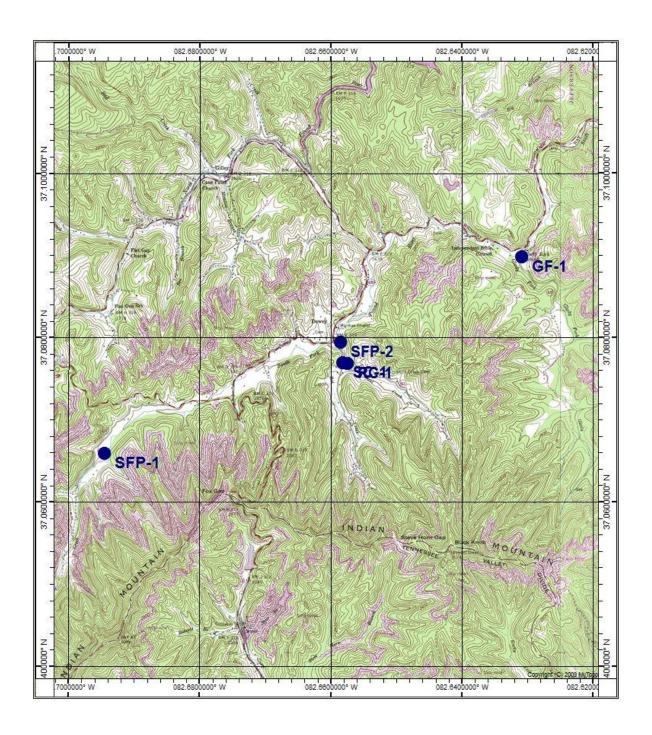


Figure 1. Map of the Monitoring Stations.

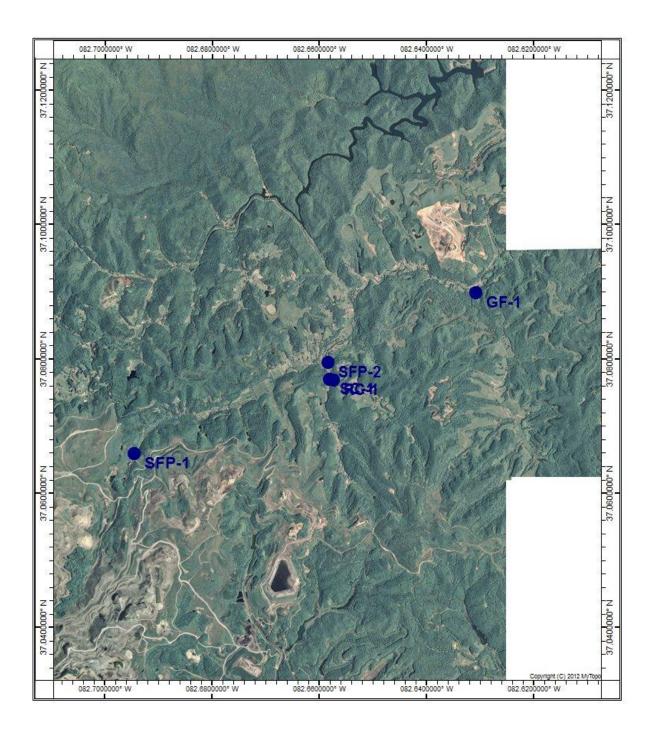


Figure 2. Orthophoto of the Study Area

2.3 Macroinvertebrate Sampling & Assessment

2.3.1 Sampling & Identification

All biological sampling was performed in accordance with the Virginia Department of Game and Inland Fisheries' scientific collection permit requirements. Macroinvertebrates were collected at each benthic station following the single habitat approach (riffle-run) as presented in the QAPP (BMI 2012). Samples were collected using a semi-quantitative approach.

Four samples were collected at each station using a 0.50 m wide rectangular kick-net having a 500 µm mesh size. Each sample was collected by first placing the net on the bottom downstream of the 0.50 m² area to be sampled. Where appropriate, large rocks and debris were brushed off into the net and removed. The area to be sampled was then vigorously kicked for approximately 30 to 90 seconds or the Best Professional Judgment of the scientist. For each monitoring station, the four samples were rinsed, composited, placed in a labeled container, and preserved in 70% ethanol. Sample information was recorded on a BMI Sample Chain of Custody Form and returned to BMI's laboratory for enumeration and identification.

Organisms were separated from the debris in the laboratory. Subsampling was performed on each sample to a standard count of $110 \pm 10\%$. All organisms were identified to the lowest practicable level. Organism identification utilized the appropriate taxonomic keys (Merritt and Cummins 2008). All data analysis was performed at the family level in order to use the Virginia Stream Condition Index (VASCI). All organisms from this study will be retained for a period of at least five years.

2.3.2 Macroinvertebrate Data Assessment

Macroinvertebrate data were analyzed using *A Stream Condition Index for Virginia Non-Coastal Streams* (Tetra Tech 2003). This VASCI was developed from an analysis of data collected by the Virginia DEQ from 1994 to 1998 and 1999 to 2002. Using these data, VASCI designated statewide reference values were determined for each of the following eight metrics of community structure:

- Total Number of Taxa measures the total number of distinct taxa and, therefore, is representative of the diversity within a sample. High diversity is a strong indicator of stream health and ability to sustain populations. This metric value is expected to decrease in response to increased perturbation.
- Total Number of EPT Taxa is a measure of the total number of distinct taxa within the Orders Ephemeroptera, Plecoptera, and Trichoptera. These orders include the mayflies, stoneflies, and caddis flies, respectively. Organisms in these three orders have low tolerances to perturbation. As a result, the value of the metric is expected to decrease in response to increasing perturbation.
- **Percent Ephemeroptera** is the percentage of individual Ephemeroptera (mayflies) within a sample. This metric is calculated by dividing the number of Ephemeroptera by the total number of sample organisms. This metric indicates the relative abundance of this sensitive order within the stream community. The value of this metric is expected to decrease in response to increasing perturbation.
- **Percent P T Less Hydropsychidae** is the percentage of individuals from the orders Plecoptera and Trichoptera "less" the individuals from the family Hydropsychidae. This metric is calculated by dividing the number

of organisms from the orders Plecoptera and Trichoptera (less Hydropsychidae) by the total number of sample organisms. This metric indicates the relative abundance of these sensitive orders within the stream community. The value of this metric is expected to decrease in response to increasing perturbation.

- Percent Scrapers is percent abundance of individuals in the sample whose primary functional mechanism for obtaining food is to graze on substrate or periphyton, attached algae and associated material within a sample. This metric is calculated by dividing the number of organisms from the functional feeding group "scrapers" by the total number of sample organisms. The value of this metric is expected to decrease in response to increasing perturbation.
- Percent Chironomidae is the percent individual organisms of the Family Chironomidae within a sample. The metric is calculated by dividing the number of Chironomidae organisms by the total number of sample organisms. Family Chironomidae, the midges, are tolerant to perturbation and their relative abundance tends to increase in impacted streams. As a result, the value of this metric is expected to increase in response to increasing perturbation.
- Percent Two Dominant Taxa is the percentage of total individuals in the two taxa with the greatest number of organisms. The metric is calculated by adding the number of organisms present in the two largest taxa. Dividing this sum by the total number of organisms yields the relative abundance of the two dominant taxa. Samples with populations concentrated into a few taxa may be an indication of impact. This metric is expected to increase in response to increasing perturbation.
- Hilsenhoff Biotic Index (HBI) was originally designed to evaluate organic pollution by utilizing tolerance values to weight taxa abundance. The

resulting HBI value is an estimation of overall pollution level. The metric is expected to increase in response to increasing perturbation.

The VASCI metrics and their expected response to perturbation are summarized in Table 2.

Table 2. VASCI Metrics and Expected Responses.

Metric	Expected Response
Total Number of Taxa	Decrease
Total Number of EPT Taxa	Decrease
Percent Ephemeroptera	Decrease
Percent PT Less Hydropsychidae	Decrease
Percent Scrapers	Decrease
Percent Chironomidae	Increase
Percent Two Dominant Taxa	Increase
Hilsenhoff Biotic Index	Increase

VASCI scores for each of the monitoring stations were calculated by dividing each station's metric values by the corresponding VASCI statewide reference values. This yielded a percentage score for each metric relative to the statewide reference condition. If the percentage score of any individual metric was greater than 100, the score was truncated to 100. The eight resulting values were then averaged to arrive at the VASCI score for each station.

2.4 Habitat Assessment

Habitat assessments were performed at each benthic station where macroinvertebrates were collected. These assessments were performed as per the RBP (USEPA 1999). Ten

habitat parameters were assessed, each receiving a score of 0 - 20. A description of each of the habitat parameters follows:

- Epifaunal Substrate / Available Cover rate the availability of structures in the stream that can be utilized as refuge, spawning, and feeding sites by macroinvertebrates. Examples of such structures would include boulders, cobble, undercut banks, roots, logs and branches. The availability of cover can be a limiting factor on stream diversity and abundance.
- Embeddedness rate the degree to which coarse substrate such as gravel; cobble and boulders are sunken into the sand, silt and mud substrate of the stream bottom. Embeddedness is the result of sediment movement and deposition. Increased embeddedness reduces the available refuge, feeding and spawning sites available to macroinvertebrates resulting in lower diversity and abundance.
- Velocity / Depth Regimes gauge the presence or absence of four velocitydepth patterns. These patterns are slow-deep, slow-shallow, fast-deep, and fast-shallow. Ideally, all four patterns should be present to best provide a stable diverse stream community.
- Sediment Deposition rates the degree to which new sediment has accumulated in pools, point bars and islands. Sediment deposition may be an indicator of an unstable environment and lowered diversity.
- Channel Flow Status rates the degree to which water fills the stream channel. Channel flow status may be affected by obstructions, diversions or widening of the stream channel. As less of the channel is filled by water, the amount of suitable substrate is also reduced.
- Channel Alteration rate the degree to which the shape of the stream channel has been altered. Alterations may include bridges, roads, diversion channels, channel straightening, artificial embankments, riprap,

dams, weirs, and other instream structures. Channel alteration often results in scouring and loss of available habitat.

- Frequency of Riffles (or Bends) rates the presence of quality riffle or sinuous habitat. Riffles and sinuous streams provide quality habitat for stable, diverse communities.
- Bank Stability indicates the degree to which banks have eroded or may erode. Eroded banks are a sign of sediment movement and deposition, which leads to reduced epifaunal habitat. Unstable banks may also point to poor vegetative cover.
- Bank Vegetative Protection gauges the extent of vegetative protection at the stream bank and the nearby riparian zone. Bank vegetation plays a vital role in erosion control, nutrient uptake, stream shading, and food supply.
- Riparian Vegetative Zone Width measures the extent of natural vegetation from the stream through the riparian zone. Wide vegetative zones provide pollution buffering, erosion control, habitat, nutrient uptake and nutrient input. These beneficial contributions can be impaired by commercial and residential development, roads, pastures, actively worked fields, etc.

Table 3 identifies each of the ten Habitat Assessment Parameters and their range of scores. Scores for each parameter were recorded on Habitat Assessment Field Log Sheets (USEPA 1999). The habitat assessment score for each station was calculated by adding the score for each parameter yielding a station total. The highest attainable score was 200. The actual habitat assessment process involves rating the ten parameters as optimal (>153), suboptimal (101-153), marginal (46-100), or poor (<45).

Table 3. Habitat Assessment Parameters

Parameter	Description	Scoring
1	Epifaunal Substrate / Available Cover	0-20
2	Embeddedness	0-20
3	Velocity / Depth Regime	0-20
4	Sediment Deposition	0-20
5	Channel Flow Status	0-20
6	Channel Alteration	0-20
7	Frequency of Riffles or Bends	0-20
8	Bank Stability	Left 0-10
o	Bank Stability	Right 0-10
9	Vacatativa Protection	Left 0-10
9	Vegetative Protection	Right 0-10
10	Pingrian Vagatativa Zona Width	Left 0-10
10	Riparian Vegetative Zone Width	Right 0-10

2.5 Physicochemical Assessment

Prior to any field data collections, all handheld meters were calibrated. Conductivity (μ S), Dissolved Oxygen (mg/L), pH (SU) and temperature (°C) were recorded at each of the sample stations, where appropriate. Conductivity, Dissolved Oxygen, pH and Temperature were all recorded using calibrated field meters. Field meters included an Oakton PCTestr 35 combination pH/EC/TDS/Temperature Meter and a Hanna model HI 9142 Dissolved Oxygen Meter.

2.6 Chemical Monitoring

Samples for analytical chemistry were collected and analyzed by Environmental Monitoring, Inc.

3.0 RESULTS

3.1 Station Location

Station attributes, including latitudes and longitudes are presented in Table 1 and depicted in Figures 1 and 2. Station photographs are presented in Appendix A. Flow was adequate for sampling at all stations.

3.2 Macroinvertebrate Monitoring Data

3.2.1 Virginia Stream Condition Index Metrics

The $110 \pm 10\%$ subsample is summarized in Table 4. The VASCI metric values for the monitoring stations sampled are summarized in Table 5. Raw data are presented in Appendix B.

Table 4. Identification / Enumeration Data

Order	Family		SFP1	SFP2	GF1	SC1	RC1
Coleoptera							
	Elmidae		2			1	
Diptera							
	Ceratopogonidae					1	1
	Chironomidae		60	60	11	44	93
	Empididae		5	1	2	6	2
	Simuliidae		5	55	3		
	Tipulidae				1	3	2
Ephemeroptera							
	Baetidae		2	1			
	Ephemerellidae					1	
Hemiptera							
	Saldidae					1	
Megoloptera							
	Sialidae		1				
Plecoptera							
	Leuctridae		8		82	45	2
	Nemouridae		2		5		
	Perlidae		2		1		
	Perlodidae					1	
Trichoptera							
	Hydropsychidae		12		6		9
	Philopotamidae				1		
	Rhyacophiloidea				2	2	
Other Taxa							
	Asellidae					1	
	Cambaridae				1	1	
	Oligochaeta		3	1	1	1	1
		Totals	102	118	116	108	110

Table 5. VASCI Metrics.

	SFP-1	SFP-2	SC-1	RC-1	GF-1
Total Taxa	5	10	10	6	12
EPT Taxa	1	5	4	2	6
%Ephemeroptera	0.85	1.96	0.93	0	0
%Plec+Tric less Hydropsych.	0	11.76	44.44	1.82	78.45
%Scrapers	0	1.96	0.93	0	0
%Chironomidae	50.85	58.82	40.74	84.55	9.48
% Top 2 Dominant	97.46	70.59	91.67	92.73	80.17
HBI (Family)	6.00	5.30	3.20	5.85	1.40

3.2.2 Virginia Stream Condition Index Scores

Table 6 presents a summary of the VASCI scoring. Raw data are presented in Appendix B. Each metric score represents a percentage of the statewide reference condition. The VASCI scores calculated ranged from 17.19 (RC-1) to 53.53 (GF1).

Table 6. VASCI Scoring.

	SFP-1	SFP-2	SC-1	RC-1	GF-1
Total Taxa	22.73	45.45	45.45	27.27	54.55
EPT Taxa	9.09	15.15	36.36	18.18	54.55
%Ephemeroptera	1.38	3.20	1.51	0	0
%Plec+Tric less Hydropsych.	0	33.05	100	5.11	100
%Scrapers	0	3.80	1.79	0	0
%Chironomidae	49.15	41.18	59.26	15.45	90.52
% Top 2 Dominant	3.67	42.50	12.04	10.51	28.65
HBI (Family)	58.82	69.12	100	61.03	100
VASCI	18.11	35.47	44.55	17.19	53.53

Figure 3 is a graphical representation of the VASCI score(s) along with the Aquatic Life Use Tiers. It should be noted that four tiers exist in the VASCI, whereas, a score of 60 or higher is considered "unimpaired" and a score of < 60 is considered "impaired".

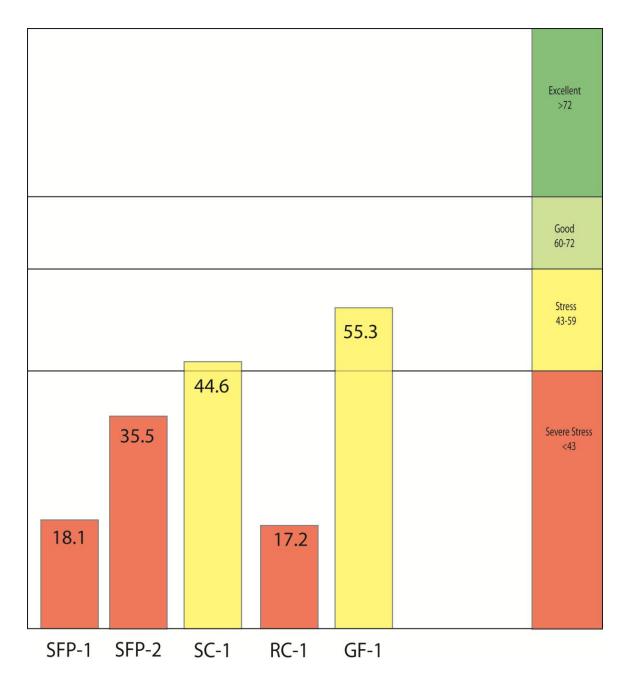


Figure 3. VASCI Scoring Summary

3.3 Habitat Assessment

Table 7 presents a summary of the habitat assessment score for the monitoring stations. Raw data are presented in Appendix B. The habitat assessment scores ranged from 143 (SFP-2) to 151 (SFP-1, RC-1) falling into the "Suboptimal" category of habitat.

Table 7. RBP Habitat Scoring.

Parameter	SFP-1	SFP-2	SC-1	RC-1	GF-1
Subst./Cover	15	19	16	18	17
Embeddedness	9	11	16	13	16
Velocity	15	15	15	15	16
Sediment Dep.	17	13	14	15	10
Channel Flow	20	20	19	19	19
Channel Alt.	13	13	11	15	15
Freq of Riffles	17	19	19	20	18
Bank Stab L	9	8	9	9	8
Bank Stab R	9	10	10	9	5
Veg. Prot. L	6	10	5	9	10
Veg. Prot. R	10	2	10	1	3
Rip. Zone L	1	3	0	8	10
Rip. Zone R	10	0	4	0	1
Total	151	143	148	151	148

Figure 4 is a visual representation of the habitat score(s) obtained for this permit along with the different tiers.

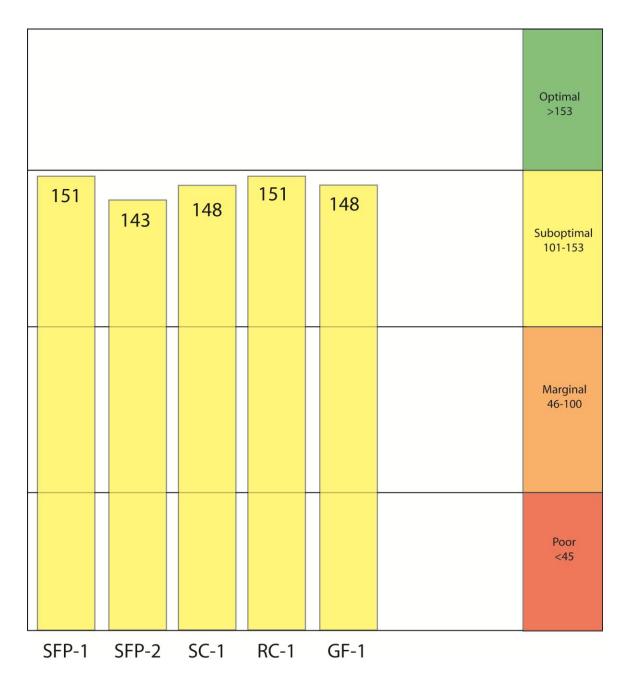


Figure 4. Habitat Scoring Sumary

3.4 Water Quality Assessment

Table 8 presents the water quality assessments.

Table 8. Water Quality Analyses.

	SFP-1	SFP-2	SC-1	RC-1	GF-1
Conductivity (µS/cm)	2160	1984	302	1380	551
Dissolved Oxygen (mg/L)	8.4	8.4	8.9	8.8	8.6
pH (SU)	7.6	8.4	8.0	8.0	8.1
Temperature (°C)	13.5	13.9	12.8	13.2	11.5
Flow (cfs)	22.31	49.06	1.97	2.03	9.73

3.5 Chemical Monitoring

Results from the chemical monitoring are not included in this report. Results will be provided by Environmental Monitoring, Inc. separately.

4.0 DISCUSSION

Water quality and both instream and riparian habitat are important determinants of the composition, structure, and function of biotic communities. The instream water quality assessments and the RBP Habitat Assessment techniques used in this study do not provide adequate discriminatory power to differentiate cause and effect. A systematic assessment of instream and riparian habitat quality is necessary to fully assess water quality conditions in streams and rivers (USEPA 1999).

4.1 Station Location

Since the sampling locations were presumably specified in the permit, it is assumed that they are representative of the permit in question. Furthermore, this study represents a significant component of the holistic watershed management approach cited in DMLR Guidance Memorandum 32-10 Revised (DMLR 2011).

4.2 Macroinvertebrate Data

The VASCI values in this study should be considered a relative ranking, indicating the comparability of the studied stream to the statewide reference for least disturbed streams. As such, these values should not be considered an absolute rating.

The VASCI validation document recommends Aquatic Life Use tiers based on the VASCI scores (VADEQ 2006). These tiers and their respective scores are as follows:

- > "Severe Stress indicates scores below 43;
- > "Stress" indicates scores from 43 to 59;
- ➤ "Good" conditions indicate scores from 60 to 72; and
- ➤ "Excellent" stream quality is represented by scores above 72.

The VASCI scores calculated for this permit ranged from 17.19 (RC-1) to 53.53 (GF1). These scores fall into the "Severe Stress" and "Stress" Aquatic Life Use tiers.

4.3 Habitat Assessment

Habitat plays an important role in species composition, various assemblages and numbers of organisms found in aquatic environments. To make meaningful impact analyses, one must consider habitat data as a possible limiting factor. The habitat assessment scores ranged from 143 (SFP-2) to 151 (SFP-1, RC-1) falling into the "Suboptimal" category of habitat.

RBP habitat assessment techniques are qualitative in nature and designed to determine comparability and ranking amongst stations. Traditionally, this approach assumes the presence of a reference station for the data set. To further explore the role habitat may be playing on the benthic score; additional data will have to be collected.

4.4 Water Quality Assessment

The water chemistry parameters examined, conductivity, pH, temperature and flow, were typical for streams influenced by urban environments and mining in the region.

5.0 LITERATURE CITED

- Biological Monitoring, Inc. (2011) *Biological Monitoring, Inc. Quality Assurance Program Plan for Wadeable Streams and Rivers;* BMI; Blacksburg, VA.
- Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap A8, 65 p.
- Merritt, R.W. and K.W. Cummins (2008) An Introduction to the Aquatic Insects of North America; Kendall/Hunt Pub.; Dubuque, Iowa.
- Tetra Tech, Inc. (2003) A stream condition index for Virginia non-coastal streams. March 2003, revised September 2003; Owings Mills, MD.
- United States Environmental Protection Agency (1999) Rapid bioassessment protocols for use in wadeable streams and rivers, second edition; EPA 841-B-99-002. Washington D.C.
- Virginia Department of Environmental Quality (2011) Draft Guidance Memo No. 11-2007 2012

 Water Quality Assessment Guidance Manual; VDEQ; Richmond, VA.
- Virginia Department of Environmental Quality (2008) Biological Monitoring Program Quality

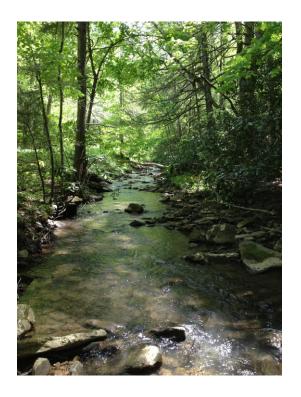
 Assurance Project Plan for Wadeable Streams and Rivers; VDEQ; Richmond, VA.
- Virginia Department of Environmental Quality (2006) Using Probabilistic Monitoring Data to Validate the Non-Coastal Virginia Stream Condition Index; VDEQ; Richmond, VA.

APPENDIX A: STATION PHOTOGRAPHS

SFP-1

SFP-2

SC-1



RC-1

GF-1

APPENDIX B: RAW DATA

Total Hydronsychidae	Total Enhamerontera	Total Ceranore	Total Chimomorphism	Talan		1	
annual fodo in termo.	oral chilemetopica	i otal scrapers	Total Crill Onormidae	I Otal P I	Abundance	lotal laxa EPI laxa	-PI laxa
	0.00	00:0	00.09	00:0	118.00	5.00	1.00
			Contract of the Contract of th				

% Ephemeroptera	% PT less Hydropsychidae	% Scrapers	% Chironomidae	Two Dominant Taxa # % Top to	vo dominant taxa	FFG #	HBI (Family)
	0.85	0.00	50.85	115.00	97.46		9009
		The state of the s					Transfer to the second

CLD1

VASCI Metrics (Truncated)	22.73	60.6	1.38	0.00	0.00	49.15	3.67	58.82
VASCI Metrics vs. Standard VASCI Metrics (Truncated)	22.73	60.6	1.38	0.00	0.00	49.15	3.67	58.82
	Number of Taxa	Number of EPT Taxa	Percent E	Percent PT Less Hydropsychidae	Percent Scrapers	Percent Chironomidae	Percent Two Dominant	Hilsenhoff Biotic Index

Raw VASCI	Final VASCI	
	18.11	18.11

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

	ork Pound	LOCATION Water Fill Station
	IVERMILE	STREAM CLASS
LAT SFPI L	ONG	RIVER BASIN
STORET#		AGENCY
INVESTIGATORS	n wB	
FORM COMPLETED BY	ON	DATE 5/13/13 REASON FOR SURVEY
WEATHER CONDITIONS	ain shower	Past 24 hours
SITE LOCATION/MAP	Draw a map of the sit	ite and indicate the areas sampled (or attach a photograph)
	Pics	or attach a photograph)
	142-14	17
	Flore	<u>) </u>
		80 1.80 6.235 pH 7.6
	0.8	
	C /.	1++ 2.4811.812 DO 8,41 40 2.46 4.261 Cond 2160
	RC 0.	40 2.46 4.261 Cond 2160

D Spring-fed
D Mixture of origins
D Other_____

Stream Subsystem

Perennial Intermittent I Tidal

Stream Origin

Glacial

Non-glacial montane
Swamp and bog

STREAM CHARACTERIZATION

Stream Type

Coldwater

Warmwater

Catchment Area

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

				1001			
WATE	RSHED IRES	□ Fie	ominant Surrounding I rest	mercial strial	Local Watershed NI No evidence Solution Sources Local Watershed Er None Modera	ome potential sources	
RIPAR VEGET (18 met	IAN FATION er buffer)	Indic Tre domin	ate the dominant type a es nant species present	nd record the Shrubs	dominant species present	te Heavy	
INSTRI FEATU	EAM RES	Estim	nated Reach Length $ eq$ nated Stream Width			urtly shaded Shaded	
		Area		m² km²	High Water Mark Proportion of Reach Morphology Types Riffle Pool Pool	Daniel II a	
		Surfa	- X7-Y	m/sec	Channelized Ye Dam Present Dye	s ONO LUD	
LARGE DEBRIS	WOODY	LWD Densit		m²/km² (LWI		2 140	
dominant species prese Portion of the reach with			ant species present	Attached Algae		C) Free floating	
Spe Diss pH Tur		Specifi Dissolv pH Turbid	erature 0 C c Conductance ved Oxygen		Water Surface Oils Slick Sheen None Other	Chemical Sulphus Globs OFlecks	
SEDIMOENT			WQ Instrument Used Turbid tribid				
UBSTR	TE	Odors O Norm O Chem Other	ical D'Anaerobio	☐ Petroleum ☐ None	Deposits Sludge Sawdust Relict shells	Paper fiber Sand	
		Oils Abser	nt 🗆 Slight 🗆 Modera	ate Profi	Looking at stones which are the undersides blacks No	ch are not deeply embedded, ck in color?	
	ORGANIC SUBS	TRATE (COMPONENTS 00%)		ORGANIC SUBSTRATE C	COMPONENTS	
bstrate Type	e Diameter		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
drock ulder	> 256 mm (10")		5	Detritus	sticks, wood, coarse plant materials (CPOM)	- Family Rica	
oble	> 256 mm (10") 64-256 mm (2.5"-10")		30	16.1.1.5),	
ivel	2-64 mm (0.1"-2		30	Muck-Mud	black, very fine organic (FPOM)		
2-64 mm (0.1"-2.5") and 0.06-2mm (gritty)			20	76.1		C. C. Fr.	
c.co zmm (gritiy)		100-1	20	Marl	grey, shell fragments		
	0.004-0.06 mm	0.004-0.06 mm < 0.004 mm (slick)			B-1, oden magments		

		()
STREAM NAME SEPI	LOCATION	
STATION# RIVERMILE	STREAM CLASS	
LATLONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	In. 5/5/12	T
	DATE 3/13/1 S TIME 1245 AM PM	REASON FOR SURVEY

Habitat		Conditio	n Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at be cond of scale).	20-40% mix of stable	Less than 20% stable habitat; lack of habitat obvious; substrate unstable or lacking.
			100	
2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are no than 75% surrounded b fine sediment.
SCORE	of niche space.			
	The second of th			
2. Embeddedness SCORE 3. Velocity/Depth Regime SCORE	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocit depth regime (usually slow-deep).
DEDIG	20 20 1 17 5	Date of		
4. Sediment Deposition	and less than 5% of the bottom affected by sediment deposition.	gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due substantial sediment deposition.
			1 4 2 1 5	2011年1
5. Channel Flow Status	minimal amount of	<25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools
SCORE			St. Victoria	

	Habitat	·	Condition	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	BCORE	1 6	地址	Mr 16 X 16 56	TO A TO A TERM
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is inspectant.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
Sami	SCORE	10 10 TV			
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE(LB)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
s to E	SCORE(RB)	Contraction of the contraction o		\$	· · · · · · · · · · · · · · · · · · ·
Parameters	9. Vegetative Protection (score each bank) SCORE (LB)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented, disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (RB)	Ru, in Sant g		<u> </u>	\$ 186 S 18 S
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE(LB)	ALL: Ban	17 18 19 19 19 19 19 19 19 19 19 19 19 19 19		W 19/10 1 30
-	SCORE (RB)	Richtsan 6 5.	A44.	4	

Total Score	
--------------------	--

Station		
SFP2		

Total Hydropsychidae	Total Ephemeroptera	Total Scrapers	Total Chironomidae	Total PT	Abundance	Total Taxa	EPT Taxa
	12.00	2.00	00.09	24.00	105:00	10.00	5.00
			The second secon				

Ephemeroptera % PT less l	Hydropsychidae	% Scrapers	% Chironomidae	Two Dominant Taxa #	% Top two dominant taxa	FFG#	HBI (Family)
1.96	11.76		1.96 58.82	32 72.00	70.59		5.30

SFP2

(ASCI Metrics (Truncated)	45.45	45.45	3.20	33.05	3.80	41.18	42.50	69.12	
VASCI Metrics vs. Standard VASCI Metrics (Truncated)	45.45	45.45	3.20	33.05	3.80	41.18	42.50	69.12	
	Number of Taxa	Number of EPT Taxa	Percent E	Percent PT Less Hydropsychidae	Percent Scrapers	Percent Chironomidae	Percent Two Dominant	Hilsenhoff Biotic Index	

VASCI	Final VASCI	
	35.47	35.47

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION
STATION # SFP RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS UB 17	
FORM COMPLETED BY	DATE 5-13-13 REASON FOR SURVEY

WEATHER CONDITIONS	Now Past 24 Has there been a heavy rain in the last 7 days? Storm (heavy rain) Air Temperature 0 C Showers (intermittent) Will well as the storm of the last 7 days? Air Temperature 0 C Other Clear/sunny Other Clear/sunny
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
BITE BOCATIONINA	Draw a map of the site and mulcate the areas sampled (or attach a photograph)
	Pics 154-159
	F tou
* X	1000
1200	
	D
A	V
	DH 8.9
	LC 06 311 11.812 Pil
8	
	C 0.9 2.90 16.521 cond 1984
	0 00 200 11.52
	RC 125_262 20.731 DO 8.38
	21100 8,58
	212 70,751
	KC 1.25 C.6C 3/2
" a	
	49.06 Ft Temp 13.9
X 0 4	191
	Width
	6.33 x L XW
	4.73
STREAM CHARACTERIZATION	Stream Subsystem Perennial
	Stream Origin Glacial Spring-fed Non-glacial montane Swamp and bog Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATE	ERSHED URES	II UITE	ominant Surrounding I rest Com eld/Pasture Indu gricultural Othe sidential	strial er	Local Watershed NPS \[\sum \text{No evidence } \subseteq \text{Som} \] \[\subseteq \text{Obvious sources} \] \[\text{Local Watershed Eros} \] \[\subseteq \text{Moderate} \]	ne potential sources
RIPAR VEGE (18 me	UAN TATION ter buffer)	Indic Tro domi	ate the dominant type a ees nant species present	and record the Shrubs	dominant species present OHO	
INSTR FEATU		11	nated Reach Length _		Canopy Cover Partly open Partly	
		Samp	oling Reach Area	m²	High Water Mark (
	. *		in km² (m²x1000)		Proportion of Reach R Morphology Types	
			nated Stream Depth		Riffle 100 %	Run_30_%
		Surfa	ce Velocity alweg)	_m/sec	Channelized Yes	□ No
		(arweg)		Dam Present Yes	No
LARGE	WOODY	LWD	m²			77.0
·	5	Densi		m²/km² (1.18/1)/ reach area)	
AQUAT VEGET	TC ATION	□ Floa	ite the dominant to	nd record the Rooted submer Attached Algae	dominant species present	□ Free floating
	54	Portio	n of the reach with aqu	atic vegetation	(00-70)0/	
WATER	QUALITY .		erature °C			
		Specifi	ic Conductanceved Oxygen		Water Odors O Normal/None O Sewa O Petroleum O Fishy	ge Chemical Other
ii.		pH	lity		Water Surface Oils Slick Sheen None Other	Globs 🔾 Flecks
			strument Used		Turbidity (if not measur Clear Slightly turb Opaque Stained	red) oid □ Turbid □ Other
SEDIME SUBSTR		Odors Norn Chen Other	nical D Apperable	☐ Petroleum ☐ None	Deposits □ Sludge □ Sawdust □ Relict shells □ (☐ Paper fiber ☐ Sand Other
		Oils Absen	nt □ Slight □ Modera	ate	Looking at stones which are the undersides black of Yes No	are not deeply embedded, in color?
IN	ORGANIC SUBS (should ad	TRATE	COMPONENTS		ORGANIC SUBSTRATE CO (does not necessarily add u	MPONENTS
Substrate Type	Diamete	r	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock			- 1 La	Detritus	sticks, wood, coarse plant	
Boulder	> 256 mm (10")			1	materials (CPOM)	
Cobble	64-256 mm (2.5"	-10")		Muck-Mud	black, very fine organic	
Gravel	2-64 mm (0.1"-2.	5")			(FPOM)	
Sand	0.06-2mm (gritty))		Marl	grey, shell fragments	<i>B</i> 1
Silt	0.004-0.06 mm				Prol, such hadments	
	< 0.004 mm (slick		Lancación de la constantina della constantina de		t a second secon	

STREAM NAME	LOCATION
station# <u>SFPQ</u> rivermile	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS	
FORM COMPLETED BY	DATE 5/13/13 REASON FOR SURVEY

T	Habitat	1	Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE	20 18 No 19	15 14 15 12 11	107-9-8 7-6	374 7 2 1
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
Parameters to be evaluated in sampling reach	SCORE	20 19 18 17 16	15 54 13 13	108 9 5 8 7 16	5 5 7 2 1 0
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by I velocity/ depth regime (usually slow-deep).
Paran	SCORE	20 19 18 17 14		10 F. 3 7 60	(1 1 1 2 1 A
Ā	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 17 18 17 16.		pools prevalent,	
	5. Channel Flow Status	minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 119 18: 15 164	15", 14", 13 - 17" 14	10, 40, 40, 10, 10,	4449

	Habitat		Condition	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabi or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
	SCORE	20% 10 15 15, 16	Ja 14 13 12 11	10-9 6 97/26	3 4 52
ping reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water shallow riffles; poor habitat; distance betwee riffles divided by the width of the stream is a ratio of >25.
прап	SCORE	70 to 18 1 to	13 14 13 12 11	100 F 8 1 6	5, 4 1, 2 1, 1
second of the second of the sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
	SCORE (LB) SCORE (RB)	Let Bank ju	7 0	The A	30.
		grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE(LB) SCORE(RB)	Right Bank, 16	A A A		A WING
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone < meters: little or no riparian vegetation due to human activities.
	SCORE(LB)	Left Bank 10 8	8	\$ 4	7 4 4 7 6
L	SCORE (RB)	Right Bank 10 . 9	8 6		

Total	Score	
LULAI	Score	

lon	
-----	--

Total Hydropsychidae	Total Ephemeroptera	Total Scrapers	Total Chironomidae	Total PT	Abundance	Total Taxa EPT Taxa	Taxa
			The second secon	CONTRACTOR OF THE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.			
	0.00	1.00	44.00	48.00	108.00	10.00	4.00
				The second secon)

% Ephemeroptera	% PT less Hydropsychidae	% Scrapers	% Chironomidae	Two Dominant Taxa #	% Top two dominant taxa	FFG #	HBI (Family)
			The second secon				14
0.93	44.44	0.93	40.74	00.66	91.67		3.20
							-

SCI Metrics (Truncated)	45.45	36.36	1.51	100.00	1.79	59.26	12.04	100.00
VASCI Metrics vs. Standard VASCI Metrics (Truncated)	45.45	36.36	1.51	124.84	1.79	59.26	12.04	100.00
	Number of Taxa	Number of EPT Taxa	Percent E	Percent PT Less Hydropsychidae	Percent Scrapers	Percent Chironomidae	Percent Two Dominant	Hilsenhoff Biotic Index

aw VASCI	Final VASCI	
	47.66	44.55

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION
STATION# <u>SC 1</u> RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS WB JR	
FORM COMPLETED BY	DATE 5-13-13 TIME 1000 AM PM REASON FOR SURVEY

	<u></u>
WEATHER CONDITIONS	Now Past 24 hours
SITE LOCATION/MAP	Draw a man of the site and indicate the
	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	PICS 166-171
	D V PH 8.0
	RC 0.3 _ 0.56.336
	0.2_0.85.340
	LC 0.35 1.85 1.295 DO 8.9 P
	Temp 12 8
	Wichth
	1,971 cfs
	ZXLXW
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent I Tidal Coldwater Warmwater
	Stream Origin Glacial Spring-fed Mixture of origins Swamp and bog Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATE	RSHED URES	· II LI POTE	ninant Surrounding l	Landuse intercial istrial	Local Watershed I	NPS Pollution Some potential sources
	9	O Agri O Resi	i/Pasture Inducultural Other	er	Local Watershed I	Crosion
RIPAR VEGET (18 met	IAN FATION ter buffer)	Indicat U Tree domin	te the dominant type	and record the I Shrubs	dominant species present	
INSTR FEATU	EAM JRES	Estima	ted Reach Length _ ted Stream Width _	m		Partly shaded Shaded
		Area in Estima	km² (m²x1000)ted Stream Depth			l Daniel IV or
N.		Surface (at that	Velocity weg)	_m/sec	Channelized Dam Present D	Yes O No
LARGE DEBRIS	WOODY	41	of LWD	m²/km² (LW)		Yes Silo
AQUAT VEGET	ATION	domina	ng Algae	Attached Algae	dominant species present gent	☐ Free floating
WATER	QUALITY	Temper Specific Dissolve	ature0 C Conductance d Oxygen		Water Odors O Normal/None O S O Petroleum O Fishy	ewage Chemical Other
SEDIMENT/ SUBSTRATE			у	e e	Tronc Gomer_	
			rument Used),	Clear Slightly Opaque Stained	asured) turbid
		Odors Norma Chemic	1	☐ Petroleum ☐ None	Deposits Sludge Sawdus Relict shells	t □ Paper fiber □ Sand □ Other_
		Oils H Absent	☐ Slight ☐ Moder	ate 🗆 Profi	Looking at stones whare the undersides blue O Yes O No	nich are not deeply embedded, lack in color?
INC	ORGANIC SUBS	STRATE C	OMPONENTS 0%)		ORGANIC SUBSTRATE	COMPONENTS
ubstrate Diameter Type		er	% Composition in Sampling Reach	Substrate Type	(does not necessarily ad	% Composition in
edrock						Sampling Area
oulder	Detritus sticks wood coarse plant		15			
bble	64-256 mm (2.51	'-10")	30	Muck-Mud	block C	2
avel	2-64 mm (0.1"-2	.5")	-40 35	ANTHON-INTING	black, very fine organic (FPOM)	0
nd	0.06-2mm (gritty)	10	Marl	circus als all 6	
t	0.004-0.06 mm		5		grey, shell fragments	
277	<0.004			1	19	

LDB Road

STREAM NAME	LOCATION	
STATION#_SC RIVERMILE	STREAM CLASS	
LATLONG	RIVER BASIN	
STORET#	AGENCY	
INVESTIGATORS		
FORM COMPLETED BY	DATE 5/13/13 TIME AM PM	REASON FOR SURVEY

	Habitat	Condition Category						
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable	Less than 20% stable habitat; lack of habitat obvious; substrate unstable or lacking.			
ų,	THE RESERVE OF THE PARTY OF THE		1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10+6				
in sampling read	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are mon than 75% surrounded by fine sediment.			
uared	SCORE	South the state of the		10 12 8 3				
a ar ameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity depth regime (usually slow-deep).			
7 77 8	SCORE	1 19 19 19 19						
	4. Sediment Deposition SCORE	and less than 5% of the bottom affected by sediment deposition.	rotination, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
1				0 %				
	5. Channel Flow Status	minimal amount of channel substrate is exposed.	25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
L	SCORE	1 " N. 18. 16. 2"	16 TA TO THE ST		Establish the agent			

	Habitat		Conditi	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Chamelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabic or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 5 3 4 6	at 1 sur	Def Erico	A 4 16 2 16 20
u sampung reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
	SCORE	204 1 1 1 1			
samping reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of crosion mostly healed over. 5-30% of bank in reach has areas of crosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing, 60-100% of bank has
	SCORE (LB) SCORE (RB)	rafinis Production		F Set	erosional scars.
	9. Vegetative Protection (score each bank)	grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
1	SCORE (RB)		# 1. E.		
1	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of ripatian zone >18 meters; human activities (i.e., parking	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
1	SCORE(LB)	Lu Bair / A			
L	SCORE (RB)	RECELLAR 6 P. 2	1 446		

Total	Score	
Lotal	Score_	

|--|

Total Hydropsychidae	Total Ephemeroptera	Total Scrapers	Total Chironomidae	Total PT	Abundance	Total Taxa EPT Taxa	PT Taxa
9.00	00:0	0.00	93.00	11.00	110.00	9.00	2.00
			C. Marcheller and C. C. Control of the Control of t				

FFG # HBI (Family)	5.85	
% Top two dominant taxa	92.73	
Two Dominant Taxa #	102.00	
% Chironomidae	84.55	
% Scrapers	0.00	
% PT less Hydropsychidae	1.82	
% Ephemeroptera	00:0	

VASCI Metrics (Truncated)	27.27	18.18	0.00	5.11	0.00	15.45	10.51	61.03
VASCI Metrics vs. Standard VASCI Metrics (Truncated)	27.27	18.18	0.00	5.11	0.00	15.45	10.51	61.03
	Number of Taxa	Number of EPT Taxa	Percent E	Percent PT Less Hydropsychidae	Percent Scrapers	Percent Chironomidae	Percent Two Dominant	Hilsenhoff Biotic Index

Raw VASCI	Final VASCI
	17.19

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION
STATION# RC 1 RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS WE JR	
FORM COMPLETED BY	DATE 5-13-13 AM PM REASON FOR SURVEY

WEATHER CONDITIONS	Now Past 24 Has there been a heavy rain in the last 7 days?
	ain (steady rain) showers (intermittent) %cloud cover %cloud cover
	clear/sunny
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	Pics 160-165
	D. V 011 00
	PH 0.0
	RC 0,4 _ 0,23.246
	Conc 1380
	C 0.5 _ 0.40.534
	LC 0.60_0.781.25 DO 8.78
	2.030 GAS
	Temp 132
	Migh 8
	2.67 XLXW
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal
	Stream Origin Glacial Non-glacial montane Spring-fed Mixture of origins Swamp and bog Other

+2 Croufish

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATE	ERSHED URES	O Fie		Landuse imercial istrial	Local Watershed NP No evidence So Obvious sources Local Watershed Ere None Moderat	ome potential sources
RIPAR VEGET (18 met	UAN TATION ter buffer)	Indic Tre domi	ate the dominant type a ses inant species present	and record the Shrubs	dominant species present	
INSTRI FEATU	EAM TRES	Estin	mated Reach Length(mated Stream Width pling Reach Area	m	Canopy Cover ☐ Partly open ☐ Partly High Water Mark	
		Area Estim		km²	Proportion of Reach Morphology Types ORIFIE & % OPool / W Channelized EYes	
LARGE	E WOODY	LWD Densit	m² ity of LWD	m²/km² (LWI	Dam Present Yes	s Divo
AQUATIC VEGETATION Indicate the dominant type and record the dominant species present Portion of the reach with aquatic vegetation &C			dominant species present gent O Rooted floating	☐ Free floating		
WATER	WATER QUALITY Tempe Specifi Dissolv pH Turbid		erature0 C fic Conductance_ ved Oxygen		Water Odors Normal/None Sew Petroleum Fishy Water Surface Oils Slick Sheen None Other	Chemical Other Flecks
SEDIME: SUBSTR	SEDIMENT/ Odors SUBSTRATE BNow		mal Sewage		Turbidity (if not meast Clear Slightly to Opaque Stamed Deposits Sludge Sawdust	
	Other Slight D				- Tener shens	th are not deeply embedded,
	(snoma au	10 ab 10 T	COMPONENTS 100%)		ORGANIC SUBSTRATE C (does not necessarily add	OMPONENTS
Substrate Type	Diameter	r	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock Boulder	> 256 mm (10")	·		Detritus	sticks, wood, coarse plant materials (CPOM)	- makang sa sa
Cobble Gravel	64-256 mm (2.5"- 2-64 mm (0.1"-2.4			Muck-Mud	black, very fine organic (FPOM)	
Sand Silt	0.06-2mm (gritty) 0.004-0.06 mm			Marl	grey, shell fragments	
Clay	< 0.004 mm (slick	<u>s</u>)				

COMPANIA	
STREAM NAME	LOCATION
STATION #_RC RIVERMILE_	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS	
FORM COMPLETED BY	DATE 5/13/13 REASON FOR SURVEY

	Habitat		Condition	n Category	
	Parameter	Optimal	Suboptimal	Marginal	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for cpifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable	Poor Less than 20% stable habitat; lack of habita obvious; substrate unstable or lacking.
	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are m than 75% surrounded I fine sediment.
-	SCORE	101.10	(# 1/4 +)	16. W T	
	3. Velocity/Depth Regime	P, Blow-suallow, last-	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I veloci depth regime (usually slow-deep).
É	SCORE				
	l. Sediment Deposition	and less than 5% of the bottom affected by sediment deposition.	gravel, sand or fine sediment; 5-30% of the pottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due substantial sediment
S	CORE	20 10 10 10 10 10		pools prevalent,	deposition.
-		Water reaches base of	Vater fills >75% of the	Wall And Street Control	
St	Channel Flow tatus	both lower banks, and a minimal amount of	vailable channel; or 25% of channel	Water fills 25-75% of the vailable channel, and/or iffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools
S	CORE	1 10 mm 20 m	(A) (A) (A) (B) (B)	With the Committee of t	TAU TO THE TOTAL TOTAL TO THE THE TOTAL TO T

	Habitat		Conditi	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabic or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 9	Les R Bas I		
20	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
sampung leach		riffles are continuous, placement of boulders or other large, natural ebstruction is important.			
m sam	SCORE	2012		Sign B. A. T. A. T.	
Transport of the control of the cont	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of crosion mostly healed over. 5-30% of bank in reach has areas of crosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has
Parameters to be evaluated broader than	SCORE (LB) SCORE (RB)	ter soil			erosional scars.
	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident;	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE(LB)	almost all plants allowed to grow naturally.	height remaining.		
-	SCORE (RB)	Russ Bant			1 1 4
	Width (score each bank riparian zone)	activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
1		L Ban V Sint Bank (0 1991		1 1 4 7 3	

Total	Score	
	- CUL C	

Total Hydropsychidae	Total Ephemeroptera	Total Scrapers	Total Chironomidae	Total PT	Abundance	Total Taxa EPT Taxa	T Taxa
	0.0	0.00	11.00	00.76	116.00	12.00	90.9

amily)	1.40	
HBI (Family)		
FFG#		
Two Dominant Taxa # % Top two dominant taxa FFG #	80.17	
Two Dominant Taxa #	93.00	
% Chironomidae	9.48	
	0.00	
% Scrapers		
% PT less Hydropsychidae	78.45	
	0.00	
% Ephemeroptera		GF1

VASCI Metrics (Truncated)	54.55	54.55	0.00	100.00	0.00	90.52	28.65	100.00
VASCI Metrics vs. Standard VASCI Metrics (Truncated)	54.55	54.55	0.00	220.36	0.00	90.52	28.65	126.47
	Number of Taxa	Number of EPT Taxa	Percent E	Percent PT Less Hydropsychidae	Percent Scrapers	Percent Chironomidae	Percent Two Dominant	Hilsenhoff Biotic Index

Raw VASCI	Final VASCI	
	71.89	53.53

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAMNAME GOODY FORK	LOCATION
STATION# F 1 RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS	
FORM COMPLETED BY WB / JR	DATE 5-13-13 REASON FOR SURVEY

WEATHER CONDITIONS	Now Past 24 hours Yes No Storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny Past 24 hours Yes No Air Temperature Other Other	
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)	1
	(or attach a photograph)	
	P.CS 148-153	
	Flow PH	8.2
	DV (300 DD)	8 57
	0.1_0.91	
	C 0.5_2.18 5.09 Cond	55
	RC 0.60_ 105 2.947	
	Width 14' 9.73 CFS emp	
	4.67 X D X W	
STREAM CHARACTERIZATION	Stream Subsystem Perennial Intermittent I Tidal Stream Type Warmwater	
	Stream Origin Glacial Spring-fed Non-glacial montane SMixture of origins Swamp and bog Other	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

-	-				10	100.00
WATE	RSHED URES	O Fie	eld/Pasture	mercial	Local Watershed NI No evidence So Obvious sources Local Watershed Er	ome potential sources
RIPAR VEGET (18 met	IAN FATION er buffer)	Indic Tro	ate the dominant type z ces nant species present	and record the Shrubs	dominant species present Grasses	
INSTRI FEATU	EAM TRES	Estin Estin	nated Reach Length	3.5 m 4.	Canopy Cover Partly open Pa	rtly shaded Shaded
		Area Estim	in km² (m²x1000)	m²km²m _m/sec	Proportion of Reach Morphology Types Riffle 60 % Pool 6 % Channelized 1 Ye	Represented by Stream Run_30_% s □ No
		(at the	atweb)		Dam Present Ye	An and a second an
DEBRIS	WOODY	LWD Densi	m	_m²/km² (LWI	0/ reach area)	
AQUATIC VEGETATION Indicate the dominant type an Rooted emergent Floating Algae dominant species present Portion of the reach with aqua			Attached Algae	gent G Rooted floating	☐ Free floating	
WATER	QUALITY .	III	erature °C	anc vegetation	1%	
,		Specifi Dissolv pH	ic Conductance		Water Odors Normal/None Sev Petroleum Fishy Water Surface Oils Slick Sheen None Other	Other
CEDRO		WQIn	strument Used		Turbidity (if not meas	ured) urbid □ Turbid □ Other
SEDIME: SUBSTRA		Offors O Nom O Chen O Othe	nical Anaerobic	☐ Petroleum ☐ None	Deposits Sludge Sawdust Relict shells	Paper fiber Sand
Oils Absent Slight Moder			ate Profi	Looking at stones which are the undersides blackses O Yes O No	ch are not deeply embedded, ck in color?	
INC	ORGANIC SUBS (should a	TRATE	COMPONENTS		ORGANIC SUBSTRATE C	COMPONENTS
Substrate Type	ubstrate Diameter		% Composition in Sampling Reach	Substrate	(does not necessarily add	up to 100%) % Composition in
Bedrock	T.		- Spang Acach	Type	ALITE	Sampling Area
Boulder	> 256 mm (10")		.16	Detritus	sticks, wood, coarse plant materials (CPOM)	17
Cobble	64-256 mm (2.5'		35	Muck-Mud	black, very fine organic	10
iravel	2-64 mm (0.1"-2		25		(FPOM)	Sa.
and	0.06-2mm (gritty)	20	Mari	grey, shell fragments	1 28
ilt	0.004-0.06 mm		10	1	Butter	
lay	< 0.004 mm (slic	k)]		

STREAM NAME GF	LOCATION
STATION# RIVERMILE_	STREAM CLASS
LATLONG	RIVER BASIN
STORET#	AGENCY
INVESTIGATORS	11
FORM COMPLETED BY	DATE 5/13/13 REASON FOR SURVEY

	Habitat	Condition Category				
	Parameter	Optimal	Suboptimal	Marginal	T -	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	adamete balis s	20-40% mix of stable	Poor Less than 20% stable habitat; lack of habitat obvious; substrate unstable or lacking.	
HOEA .	2. Embeddedness	Gravel, cobble, and	Gravel, cobble, and	Company 1		
III S	2. Empeddedness	boulder particles are 0- 25% surrounded by fine	boulder particles are 25-	Gravel, cobble, and boulder particles are 50-	Gravel, cobble, and boulder particles are mo	
ď		sediment. Layering of cobble provides diversity	50% surrounded by fine sediment.	75% surrounded by fine sediment.	than 75% surrounded by	
1		of niche space.			fine sediment.	
	SCORE	18 18 16 16 16 16 16 16 16 16 16 16 16 16 16				
each	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity depth regime (usually slow-deep).	
	SCORE					
	4. Sediment Deposition	sediment deposition.	deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
					4 10	
2	5. Channel Flow Status	minimal amount of	<25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
15	SCORE	Transfer and				

	Habitat		Conditi	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabio or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	The state of the	1. 全国企		
ping reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water of shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
и заш	SCORE	20. 19. 8		16	
and a sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream. SCORE(LB)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of crosion mostly healed over. 5-30% of bank in reach has areas of crosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
2	SCORE(RB)	Land Land		(a) 18 (a) 7	4.00
Paramete	9. Vegetative Protection (score each bank)	macrophytes; vegetative disruption through grazing or mowing minimal or not evident;	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE (RB)	Ru Bank 77			
	10. Riparian Vegetative Zone Width (score each bank riparian zone) SCORE(LB)	activities (i.e., parking	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
ı		Republican 0 9			

Total	Score	
~ ~ ~ ~ ~	DEGIL	